

TACAS 2022

1. MOTIVATION

Goal: Learn Simple (human interpretable) models by observing complex systems

2. LINEAR TEMPORAL LOGIC

- Interpreted over **finite words**
- Used to express temporal properties using *Finally* (**F**), *Globally* (**G**), *Next* (**X**), etc. operator.

Syntax:

 $\varphi ::= p \in \Sigma \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \mathbf{X}\varphi \mid \mathbf{F}\varphi \mid \mathbf{G}\varphi$

- LTL is close to natural language
- Until (U) is not our fragment.

Question: Find a minimal separating LTL formula φ , such that, all $w \in P$ satisfies φ and all $w \in N$ do not.

SCALABLE ANYTIME ALGORITHMS FOR LEARNING FORMULAS IN LINEAR TEMPORAL LOGIC

Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow & Daniel Neider

4. STATE OF THE ART

Existing approaches use:

- SAT-Solvers (Neider & Gavran, FMCAD'18)
- SyGuS solvers (Arif et al., FMCAD'20)

5. OVERVIEW OF THE ALGORITHM

- Use Dynamic Programming to extract LTL patterns of increasing size
- Use Greedy approximation to generate their Boolean combinations (**Boolean Set Cover**)

5.1. EXTRACTING LTL PATTERNS

Directed LTL (dLTL)

LTL patterns with the following grammar:

 $\varphi := \mathbf{X}^n p \mid \mathbf{F} \mathbf{X}^n p \mid \mathbf{X}^n (p \wedge \varphi) \mid \mathbf{F} \mathbf{X}^n (p \wedge \varphi)$

Example: $\mathbf{F}(p \wedge \mathbf{X}q)$ is in dLTL, but $(\mathbf{F}p \wedge \mathbf{X}q)$ is not.

Extracting dLTL formulas

Sample S

Positive Words pqqpp ✓ qq**q**pp**p** ✓

Negative Words qqqq X ppqp 🗙

Idea: Find separating patterns with intervals

Candidate: 1q>0p

Formula: X(q \land Fp)

CONTACT INFORMATION

Ritam Raha Email: ritam.raha@uantwerpen.be

time SCARLET 10^{-1} 7. CONCLUSION

5.2. BOOLEAN SET COVER

Problem: Find the minimal separating *boolean combination of formulas* Algorithm: Extension of classical Set Cover: Greedy approximation **Solution:** $(\varphi_1 \land \varphi_2) \lor \varphi_3$

Theoretical Guarentees

The boolean combination of dLTL formulas is as expressive as $LTL(\mathbf{F}, \mathbf{X}, \wedge, \vee)$

Dual: $\neg \mathbf{F} \neg \varphi = \mathbf{G} \varphi$: swap positive and negative words- can capture **G**!

6. EXPERIMENTAL EVALUATION

• SCARLET: python based tool; compared it against two tools FLIE (SAT-based) and SYSLITE (SyGuS based)

• Benchmarks synthetically generated from existing formulas without **U** operator.

SYSLITE time

Size comparison

Runtime comparison

• An approximation algorithm for finding concise separating LTL formulas

• Empirically established that such an algorithm infers concise formulas in reasonable time

