
SAT based learning Algorithms

Author:
Rajarshi Roy

Supervisor:
Dr. Daniel Neider

A thesis submitted for the degree of

Masters degree in Computer Science
at Chennai Mathematical Institute

June 15, 2019

Abstract

In this thesis, we present algorithms for learning regular-expressions, omega-regular expressions,
LTL fomulas and PSL formulas, from a given sample of positive and negative examples. The
precise learning problem studied in this thesis—is to find a model consistent with a given sample,
that is, a model that accepts the positive examples and rejects the negative examples in the sample.
SAT-solver based algorithms have been efficient in solving these problems in certain models such
as Linear Temporal Logic (LTL).

Property Specification Language (PSL) is an extension of LTL,with increased expressive power.
Now, PSL relies heavily on regular expressions. Hence, it is necessary to look at the learning
problem for regular expressions and ω−regular expressions for solving the learning problem of
PSL.While it is straightforward to apply the existing techniques for solving the problem for regular
expressions, it is challenging to translate the same ideas to ω−regular expression. This is because
the sample given in the case of ω-regular expressions contains infinite words. The same can be
said about PSL formulas as well.

Acknowledgements

I would like to thank my supervisor, Daniel Neider, for presenting me with such a wonderful
problem for mymaster thesis and being a great mentor while I worked on it. I would also, express
my gratitude tomy professors at CMI for teachingme courses, whichmademe competent enough
to tackle a problem of this kind. Last but not the least, I would like to thank all my colleagues and
friends at MPI and CMI for their constant assistance in helping me complete my thesis.

Contents

1 Introduction 3
1.1 Possible Applications . 4

2 Preliminaries 5

3 Learning Regular Expressions 7
3.1 Regular Expressions . 7
3.2 The Learning Problem . 9

3.2.1 Proof of correctness . 10

4 Learning ω−Regular Expressions 13
4.1 ω−Regular expression . 13
4.2 The Learning Problem . 16

5 Learning of Linear Temporal Language 19
5.1 Linear Temporal Logic . 19
5.2 The Learning Problem . 20

6 Learning Program Specification Language 22
6.1 Property Specification Language . 22
6.2 The Learning Problem . 23

7 Conclusion 25

A Proofs from Chapter 4 26

B Proof of Claim 2: 27

Bibliography 31

2

Chapter 1

Introduction

Constructing a model of system behavior from observation traces, in a form that is understand-
able and meaningful to a human, is central to human interpretability of complex systems. Natu-
rally, ability to learn human-interpretable models is quite crucial in order to understand general
behaviour of a system. But, various scenarios require us to come up with different models that
suitably represent it. To this end, we have presented learning techniques for a variety of models,
which could find applications in diverse spheres.

The techniques used in this thesis have been motivated by ideas from the work of Neider and
Gavran[6], where they present novel algorithms for learning formulas in Linear Temporal Logic
(LTL)[7]. LTL has a natural syntax useful in specifying properties of programs for verification. But,
there are certain program behaviourwhich cannot be characterized by LTL formulas. For instance,
the property "Event e1 happens after even number of steps of e2" cannot be expressed in LTL[8].
This led us to look at Property Specification Language (PSL)[4], which extends the expressive
power of LTL and captures a wider range of program behaviour. PSL is the IEEE standard for
temporal logic (IEEE). In terms of expressiveness, PSL is as powerful as ω−regular expressions
while LTL can express only star-free ω−regular expressions. Consequently, formulating learning
algorithms for PSL formulas is the natural next step.

The increased expressive power of PSL is due to the incorporation of regular expressions in
its syntax. Thus, in an attempt to solve the aforementioned problem, it is necessary to under-
stand how the same problem could be solved when the model being learnt is a regular expression.
Moreover, since PSL formula argue about infinite strings, it is also useful to devise algorithms for
learning ω−regular expression as well.

The main goal of this thesis is to devise algorithms for learning high-level descriptions of sys-
tem behaviour provided in the form of a sample consisting of some classified examples. Moreover,
the description needs to be succints, it is not quite chalenging to construct arbitrary large models
which adhere to the given examples. To be precise, given a sample S consisting of two finite sets
of positive and negative examples, we want to learn the ’smallest’ model M that is consistent
with S—in the sense that all positive examples satisfyM, whereas all negative examples violate
M. The model being learnt could be—a regular expression (Chapter 3), ω−regular expressions
(Chapter 4), LTL fomulas (Chapter 5) or PSL formulas (Chapter 6).

The general strategy that has been employed for solving the learning problems is encoding the
problem in a series of satisfiability formulas and then using highly optimized SAT-solver to search
for a solution.

3

4 CHAPTER 1. INTRODUCTION

1.1 Possible Applications

Most of the learning problems for various models emerge out of some software verification prob-
lem. But, by extending the ideas to solve learning problems for regular expressions and ω−regular
expressions, there could be potential applications in diverse fields. This is because patterns and
sequences are abundant in nature and identifying them could prove to be quite crucial. Here, we
present some possible applications.

• Bug Detection: From a buggy program, it is possible to procure the data of desirable and
undesirable program behaviour. In order to have a deeper understanding of the root of
the bug, it could be helpful to apply the learning algorithms using the data of the program
traces as the sample. High level description of the bug, could benefit bug-detection. Since,
there exists learning algorithms for several models, the model which captures the bug more
appropriately, can be learned.

• Classifying biological sequences: Consider the following table which represents biological se-
quences that have been associated with a group of diseases called amyloidosis.

String Class
stviil positive
ktvive negative
stviie positive
st piie negative

Now, from this data it can be deduced that any sequence satisfying the regular expression
Σ∗(stv)Σ∗ could potentially be harmful. Hence, identifying such a pattern could be benefi-
cial in this case. This problem has been discussed in [1].

Chapter 2

Preliminaries

Words and Languages An alphabet Σ is a nonempty, finite set of symbols. A finite word u =

a0 · · · an−1 is a finite sequence of symbols ai ∈ Σ for i ∈ {1, . . . , n}. The empty sequence is called
the empty word and is denoted by ε. The length of a word u, denoted by |u|, is the number of
symbols in u. For two words u = a0 · · · am−1 and v = b0 · · · bn−1, the concatenation of u and v
is the word u ◦ v = uv = a0 · · · am−1b1 · · · bn−1. The set of all finite words over an alphabet Σ is
denoted by Σ∗. Let w[i, j) refer to the subword of w starting at position i and ending at position
j − 1. Also, w[i, i) = ε in this definition. Assume, here that the indexing of word starts from
position 0.

An infinite word α = a0a1 . . . is an infinite sequence of symbols ai ∈ Σ for each i ≥ 1. Given
a word v ∈ Σ+, the infinite repetition of v is the infinite word vω = vv . . . ∈ Σω . We say that a
word α ∈ Σω is ultimately periodic if it can be written as uvω with u ∈ Σ∗ and v ∈ Σ+. Moreover,
let α[i, j) = aiai+1 · · · aj−1 be the finite infix of the infinite word α = a0a1 · · · ∈ Σω . Similarly, let
α[i,∞) be the infinite suffix aiai+1 . . . ∈ Σω .

A subset L ⊆ Σω of infinite words is called a ω−language. Concatenation can be also be ex-
tended to account for ω−languages as well and has been referred to as ◦ω in this thesis. But,
L ◦ω L′ is well-defined only when L is a language of finite words and L′ is a ω−language. Also,
the ω−iteration of a language L ⊆ Σ∗ is the ω−language Lω = {w1w2w3 · · · | wi ∈ L\{ε}}.

Deterministic FiniteAutomata ADeterministic Finite Automaton (DFA) is a tupleA = (Σ, Q, q0, δ, F),
where Σ is a finite alphabet, Q is a non-empty, finite set of states, q0 ∈ Q is the initial state,
δ : Q × Σ → Q is the transition function, and F ⊆ Q is the set of final (or accepting) states.
We can extend δ to a function δ : Q×Σ∗ → Q by δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a) for all a ∈
Σ∗ and w ∈ Σ∗. The language accepted by A is the set L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. The
run of a DFA on a word w = a0 · · · an is defined as a sequence of states of the DFA q0, q1, · · · , qn,
qn + 1, such that δ(qi, a1) = qi+1 for all i = 1 · · ·n. A word w is accepted if the run of the DFA on
w terminates in a final state. A language L is regular iff there exists a DFA A such that L(A) = L

Propositional Boolean Logic: Let AP be a set of propositional variables, which take Boolean
values from B = {0, 1} (0 representing false and 1 representing true). Formulas in propositional
(Boolean) logic have the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ

, where p ∈ APMoreover, we add syntactic sugar and allow the formulas true , false , ϕ∧ψ, ϕ =⇒

5

6 CHAPTER 2. PRELIMINARIES

ψ, ϕ ⇐⇒ ψ. A propositional valuation is a mapping v : AP → B, which maps propositional
variables to Boolean values.

Semantics: The semantics of propositional logic is given by a satisfaction relation � that is in-
ductively defined as follows:

v � p iff v(p) = 1; v � ¬ϕ iff v 6� ϕ; v � ϕ ∨ ψ iff v � ϕ or v � ψ

In the case that v � ϕ, we say that v satisfies ϕ and call it a model of ϕ. A propositional formula ϕ
is satisfiable if there exists a model v of ϕ. The size of a formula is the number of its subformulas
(defined in the usual way).

Chapter 3

Learning Regular Expressions

3.1 Regular Expressions

Regular expression consist of a finite alphabet Σ along with three operators + (union), ◦ (concate-
nation) ∗ (Kleene star) with the following grammar

r ::= ε | a ∈ Σ | r + r | r ◦ r | r∗

The set of all regular expressions over alphabet set Σ is referred to asRΣ. With slight abuse of
notation, another commonly used expression is r+ which refers to the expression r ◦ r∗.

A regular expression can also be represented as a syntax tree where the nodes are labelled by
elements from ΛR, where ΛR = Σ ∪ {ε,+, ◦, ∗}-a combination of alphabets and operators. Leaf
nodes are labelled by only alphabets or εwhereas the internal nodes are labelled by operator with
the operands being their children.

A syntax DAG can also be created by merging the common subtrees in different branches of a
syntax tree. A syntax DAG essentially eliminates redundant subexpressions from a syntax tree.

The size of a regular expression is the number of unique subexpression present. It coincides
with the number of nodes in the syntax DAG representation of the expression.

The nodes of syntax DAGwith n nodes can be indexed by natural numbers 1, . . . , n. The index-
ing that we follow in this thesis, satisfies the property that children of a node are always indexed
by numbers smaller than the node itself and only a leaf node can have the index 1. Note that the
indexing need not be unique. Fig. 3.1 shows an example of syntax tree and a syntax DAG for the
regular expression (a ◦ b) + b∗.

+

◦ ∗

a b b

(a) Syntax tree

+

◦ ∗

a b

(b) Syntax DAG

5

3 4

1 2

(c) Indexing of syntax DAG

Figure 3.1: Syntax tree, syntax DAG with indexing of node, of the regular expression (a ◦ b) + b∗

7

8 CHAPTER 3. LEARNING REGULAR EXPRESSIONS

Semantics The semantics of regular expression is generally defined in terms of the language they
define:

JεK = {ε}; JaK = {a}; Jr1 + r2K = Jr1K ∪ Jr2K; Jr1 ◦ r2K = Jr1K ◦ Jr2K; Jr∗K = JrK∗

Definition 1. Matching relation`⊆ Σ∗×RΣ is defined inductively on the structure of a regular expression
r in the following manner:

w[i, j) ` ε ⇐⇒ i = j

w[i, j) ` a where a ∈ Σ ⇐⇒ w[i, j) = a

w[i, j) ` r1 + r2 ⇐⇒ w[i, j) ` r1 or w[i, j) ` r2

w[i, j) ` r1 ◦ r2 ⇐⇒ ∃k ∈ N such that i ≤ k ≤ j and w[i, k) ` r1 and w[k + 1, j) ` r2

w[i, j) ` r∗ ⇐⇒

i = j or

∃k ∈ N such that i < k ≤ j and w[i, k) ` r and w[k, j) ` r∗

The matching relation ` holds true when a word belongs to the language defined by the reg-
ular expression. More precisely, we have that w[i, j) ` r ⇐⇒ w[i, j) ∈ JrK. This statement can be
proved using a simple induction on the structure of r.

Motivated by definition of the matching relation, it is possible to design a dynamic programming
algorithm for checking whether a given word wmatches a regular expression r. Let Tw be a three
dimensional table with |w| + 1 number of rows and columns both indexed using 0 · · ·n and the
third index is used to denote the subexpression of the expression r for which we are computing
the matching relation. The entries of the table have the following meaning.

Tw(i, j, r) = 1 ⇐⇒ w[i, j) ` r

Given, a regular expression r, the table Tw is constructed in a iterative manner starting from
the portion of the table which refers to the leaf elements of the syntax DAG. These table entries are
used for propagating the results to table entries for the internal nodes.

- For the regular expression ε: Tw(i, j, ε) = 1 iff i = j

- For a leaf node say a, Tw(i, j, a) = 1 iff w[i, j) = a

- For + (union) node, with children r1 and r2:
Tw(i, j, r1 + r2) = 1 if Tw(i, j, r1) = 1 or Tw(i, j, r2) = 1

- For ◦ (concat) node, with children r1 and r2:
Tw(i, j, r1 ◦ r2) = 1 iff ∃k, i ≤ k ≤ j such that Tw(i, k, r1) = 1 and Tw(k, j, r2) = 1

- For ∗ (Kleene star) node, with a child r:
Tw(i, j, r∗) = 1 iff i = j or ∃k, i ≤ k ≤ j such that Tw(i, k, r) = 1 and Tw(k, j, r∗) = 1

In this case, Tw is filled starting from (n, n)−th entry up along the columns.

9 CHAPTER 3. LEARNING REGULAR EXPRESSIONS

3.2 The Learning Problem

We assume that the data to learn from is given as a pair S = (P,N) consisting of two finite, disjoint
sets (P,N) ⊂ Σ∗ of finite words such that (P ∩ N) 6= ∅. We call this pair a sample. Moreover, we
say that a regular expression r over Σ is consistent with a sample S = (P,N) if

1. r ` u for each u ∈ P ; and

2. r 0 u for each u ∈ N .

SAT solver based solution: A possible solution could be to use SAT-solvers to find the regular
expression consistent with the given sample. The formula ΦSn that we feed into the solver has the
following structure:

ΦSn = Φstructure
n ∧ Φconsistency

n (3.1)

Here, satisfying assignment of Φstructure
n provides encoding of a syntax DAG which describes

expression of size n, while the Φ
consistency
n checks whether the guessed expression is consistent with

the given sample. Φstructure
n uses the following variables:

• xp,λ where p ∈ {1, · · · , n} and λ ∈ ΛR

• lp,q where p ∈ {2, · · · , n} and q ∈ {1, · · · , p− 1}

• rp,q where p ∈ {2, · · · , n} and q ∈ {1, · · · , p− 1}

Now, this is how the formula looks like. It is formed by taking conjunction of the following sub-
formulas.

[
∧

1≤p≤n

∨
λ∈ΛR

xp,λ] ∧ [
∧

1≤p≤n

∧
λ 6=λ′∈ΛR

¬xp,λ ∨ ¬xp,λ′] (3.2)

[
∧

2≤p≤n

∨
1≤q≤p

lp,q] ∧ [
∧

2≤p≤n

∧
1≤q≤q′≤n

¬lp,q ∨ ¬lp,q′] (3.3)

[
∧

2≤p≤n

∨
1≤q≤p

rp,q] ∧ [
∧

2≤p≤n

∧
1≤q≤q′≤n

¬rp,q ∨ ¬rp,q′] (3.4)

x1,ε ∨
∨
a∈Σ

x1,a (3.5)

Subformula (3.2) says that each node would be uniquely labelled by an element from ΛR. Subfor-
mulas (3.3) and (3.4) say that each node would have a unique left and right child respectively. Last
but not the least, Subformula (3.5) says that the first node can have only ε or an alphabet.

Now, it needs to be ensured that the regular expression guessed by the first part Φstructure
n is con-

sistent with the given sample. For each word w in the given sample, consider a three dimensional
table whose entries are basically variables ywi,j,p, where the indices i and j refers to the substring
of the word w and p refers to the sub-expression we are looking at. For simplicity, we assume
m = |w|. Now, Φwn is a conjunction of the following subformulas:

10 CHAPTER 3. LEARNING REGULAR EXPRESSIONS

∧
1≤p≤n

xp,ε →
[∧

0≤i≤j≤m

ywi,j,p ↔ [i = j]
]

(3.6)

∧
1≤p≤n

∧
a∈Σ

xp,a →
[∧

0≤i≤j≤m

ywi,j,p if w[i, j) = a

¬ywi,j,p if w[i, j) 6= a

]
(3.7)

∧
1≤p≤n

1≤q,q′≤p

xp,+ ∧ lp,q ∧ rp,q′ →
[∧

0≤i≤j≤m

[
ywi,j,p ↔ ywi,j,q ∨ ywi,j,q′

]]
(3.8)

∧
1≤p≤n

1≤q,q′≤p

xp,◦ ∧ lp,q ∧ rp,q′ →
[∧

0≤i≤j≤m

[
ywi,j,p ↔

∨
i≤k≤j

ywi,k,q ∧ ywk,j,q′
]]

(3.9)

∧
1≤p≤n

1≤q,q′≤p

xp,∗ ∧ lp,q →
[∧

0≤i≤j≤m

[
ywi,j,p ↔ [i = j] ∨

∨
i<k≤j

ywi,k,q ∧ ywk,j,p
]]

(3.10)

The idea for each of these subformulas is motivated by the procedure for filling out the table
Tw, which in turn essentially uses the way the matching relation has been defined. Using the
formula Φwn for various w, we construct Φ

consistency
n in the following manner. Notice, that variable

yw0,m,n encodes whether word wmatches the guessed regular expression. Hence, yw0,m,n should be
true for positive words and should be false for negative words.

Φconsistency
n =

[∧
w∈P

Φwn ∧ yw0,m,n
]
∧
[∧
w∈N

Φwn ∧ ¬yw0,m,n
]

(3.11)

Given that we have devised SAT formula for this problem, we utilise it to come up with a
simple algorithm using SAT-solvers to find out the smallest regular expression consistent with the
sample.

Algorithm 1: SAT-based learning algorithm for regular expressions
Input: A sample S

1 n← 0
2 repeat
3 n← n+ 1

4 Construct and solve the formula ΦSn using a SAT solver
5 until ΦSn is satisfiable, say with model v

6 Rv ← Extract(ΦSn , v)
7 return the regular expression Rv

In the above algorithm, if we can find a model v of ΦSn , we can extract a regular expression Rv

using the procedureExtract(Φn
S , v). The first partΦstructure

n of the formulaΦnS encodes the structure
of the regular expression as a syntax DAG. The model v assigns valuations to the variables xp,λ,
lp,q and rp,q which determines the shape of the syntax DAG. Hence, the procedure Extract(Φn

S , v)

uses this information to derive the expression Rv from the syntax tree.

3.2.1 Proof of correctness

Claim 1. Let S = (P,N) be a sample, n ∈ N \ {0}, and ΦSn be the propositional formula defined above.
Then, the following holds:

11 CHAPTER 3. LEARNING REGULAR EXPRESSIONS

1. If there exists a regular expression of size n, RS that is consistent with S, then the propositional
formula ΦSn is satisfiable.

2. If v |= ΦSn , then Rv is a regular expression of size n that is consistent with S.

Proof. Using the syntax DAG of the expression RS which is indexed using 1 · · ·n, we formulate
a valuation v for the propositional variables in ΦSn . We use RSp to refer to the regular expression
rooted at the pth node.

− We set v(xp,λ) = 1 iff the pth node is labelled by λ.

− We set v(lp,q) = 1 iff qth node is the left child of the pth node and similarly, v(rp,q) = 1 iff qth

node is the right child of the pth node.

− We set v(ywi,j,p) = 1 iff w[i, j) ` RSp

Firstly, it is easy to see that v |= Φstructure
n , since the formulated valuation ensures the uniqueness

of the labels of the nodes as well as that of the left and right children. Moreover, v |= Φwn for
w ∈ P ∪ N , since, the values of the variables ywi,j,p correspond exactly to the valuation of each
subexpression RSi on the subword w[i, j). Finally, the fact that RS is consistent with S implies
v |= ywi,j,p for each w ∈ P and v |= ¬ywi,j,p for each w ∈ N . Thus, v |= ΦSn , which proves that ΦSn is
satisfiable.

For the second statement, since, v |= ΦSn , we have v |= Φstructure
n as well. Hence, the valua-

tion of the variables xp,λ, lp,q , and rp,q encode a syntax DAG from which we obtain the regular
expression Rv . Again here, we consider Rvp to be the subexpression of Rv rooted at the node p.
Now, it needs to be shown that Rv is indeed consistent with the sample S. For that we show,
v(ywi,j,p) = 1 ⇐⇒ w[i, j) ` Rvp for any i,j ∈ {0, · · · ,m} where m = |w| and p ∈ {0, · · · , n}. This
can be done using induction on the structure of Rv .

− Base case Rvp = ε: In this case, v(xp,ε) = 1, which leads to the following implications:

v(ywi,j,p) = 1 ⇐⇒ p ∈ uvω[i, j) [Using Subformula (3.6)]

⇐⇒ w[i, j) ` ε [Using Def. 1]

− Base case Rvp = p: In this case, v(xp,a) = 1 and this leads to the following implications:

v(ywi,j,p) = 1 ⇐⇒ w[i, j) = a [Using Subformula (3.7)]

⇐⇒ w[i, j) ` a [Using Def. 1]

− Case Rvp = Rvq +Rvq′ : In this case, v(xp,+), v(lp,q), v(rp,q′) are all set to 1, and this leads to the
following implications:

v(ywi,j,p) = 1 ⇐⇒ v(ywi,j,q) = 1 or v(ywi,j,q′) = 1 [Using Subformula (3.8)]

⇐⇒ w[i, j) ` Rvq or w[i, j) ` Rvq′ [Using ind. hypothesis]

⇐⇒ w[i, j) ` Rvq +Rvq′ [Using Def. 1]

− Case Rvp = Rvq ◦ Rvq′ : In this case, v(xp,◦), v(lp,q), v(rp,q′) are all set to 1 and this leads to the

12 CHAPTER 3. LEARNING REGULAR EXPRESSIONS

following implications:

v(ywi,j,p) = 1 ⇐⇒ ∃k ∈ N, 1 ≤ k ≤ m, v(ywi,k,q) = 1 and v(ywk,j,q′) = 1 [Using Subformula (3.9)]

⇐⇒ ∃k ∈ N, 1 ≤ k ≤ m,w[i, k) ` Rvq and w[k, j) ` Rvq′ [Using ind. hypothesis]

⇐⇒ w[i, j) ` Rvq ◦Rvq′ [Using Def. 1]

− Case Rvp = (Rvq)∗: In this case, v(xp,∗) and v(lp,q) are set to 1 and this leads to the following
implications:

v(ywi,j,p) = 1 ⇐⇒

i = j or

∃k ∈ N, 1 ≤ k ≤ m, v(ywi,k,q) = 1 and v(ywk,j,p) = 1
[Using Subformula (3.10)]

⇐⇒

i = j or

∃k ∈ N, 1 ≤ k ≤ m, w[i, k) ` Rvq and w[k, j) ` (Rvq)∗
[Using ind. hypothesis]

⇐⇒ w[i, j) ` (Rvq)∗ [Using Def. 1]

Here, we assumed that v(ywk,j,p) = 1 iff w[k, j) ` Rvp in the second step, which cannot be
deduced from the induction on the structure of Rvp. This we obtained using another level of
induction, which is on the length of the subword that matchesRvp. More precisely, we induct
on k which ranges from j to i+ 1, where by induction hypothesis, it is assumed that

v(ywk,j,p) = 1 ⇐⇒ w[k, j) ` Rvp ∀k, i < k ≤ j

The base case occurswhen k = j, and then,wehave v(ywk,j,p) = 1 ⇐⇒ k = j ⇐⇒ w[k, j) ` Rvp.

Chapter 4

Learning ω−Regular Expressions

4.1 ω−Regular expression

An ω-regular expression rω is an expression with the following grammar:

rω ::= rω | r ◦ω rω | rω +ω rω

where, r is a regular expression as described in Section 3.1. Let the set of ω−regular expressions be
denoted by RωΣ. Again here, an ω−regular expression can be represented in the form of a syntax
tree or a syntax DAG, similar to ones for regular expressions. The only difference here is that the
nodes of the syntax tree and the syntax DAG are labelled by elements from Λω = ΛR∪{ω,+ω, ◦ω}.

Semantics The semantics of anω−regular expression is as usual defined in terms of the language
they define; obtained in the following manner:

JrωK = JrKω; Jr ◦ω rωK = JrK ◦ω JrωK; Jrω +ω r
′
ωK = JrωK ∪ Jr′ωK

It should be noted that rω is well defined only when ε /∈ JrK, since otherwise, JrωK might contain
invalid infinite words.

Now, let us look at some results regarding membership of ultimately periodic words in lan-
guages defined by ω−regular expressions. In the following results, we assume u ∈ Σ∗ and v ∈ Σ+

and r is a regular expression inRΣ, such that ε /∈ JrK. Moreover, assume that the minimal DFA of
JrK has size n.

Proposition 1. uvω ∈ JrωK ⇐⇒ ∃i, j ∈ N, |u| < i < j, uvω[0, i) ∈ Jr+K and uvω[i, j) ∈
Jr+K where j ≡ i mod |v|.

Proof. (⇒) From the semantics of ω-regular expressions, we have uvω ∈ JrωK =⇒ uvω ∈ JrKω .
Hence, there exists an infinite sequence of natural numbers i1, i2, i3, . . . satisfying |u| < i1 < i2 < . . .

such that uvω[0, i1) ∈ Jr+K and from then on uvω[i1, i2) ∈ JrK, uvω[i2, i3) ∈ JrK and so on. Since,
i0, i1, i2, . . . is an infinite sequence, it is possible to find numbers i and j in the sequence, such that
j ≡ i mod |v| using pigeonhole principle. Now, clearly, uvω[0, i) ∈ Jr+K and uvω[i, j) ∈ Jr+K,
since i and j belong to the sequence.

(⇐) Let uvω[0, i) = v1 and uvω[i, j) = v2, where both uvω[0, i) and uvω[i, j) satisfy the prop-
erties mentioned in the lemma. It is an easy observation that v1v

ω
2 = uvω . As we already know

v1 ∈ Jr+K and v2 ∈ Jr+K, we can conclude that v1v
ω
2 ∈ Jr+K ◦ Jr+Kω =⇒ v1v

ω
2 ∈ JrωK =⇒ uvω ∈ JrωK.

13

14 CHAPTER 4. LEARNING ω−REGULAR EXPRESSIONS

length of run: n|v|
v v v v v v v v v v v v · · ·

(q0, a0) (qi, ai) (qf , aj) (qi, ai) (qf , aj) (qi, ai)

R R

Figure 4.1: The run of the DFA of JrK on vω[i, j), where R is the repeating run staring at (l, q). The
first occurrence of R happens within n|v|+ 1 steps and hence, the first occurrence of state qf also
happens within that many steps.

Lemma 1. vω ∈ JrωK ⇐⇒ ∃i ∈ N, vω[0, i) ∈ Jr|v|+1K.

Proof. (⇒) Since, vω ∈ JrKω , for any natural number n, there is a prefix vω[0, i) of vω such that
vω[0, i) ∈ JrnK. Therefore, it holds true for n = |v|+ 1 as well.

(⇐) Here, we have vω[0, i) ∈ Jr|v|+1K for some i ∈ N. Therefore, we can find a finite sequence of
distinct natural numbers i1, i2, . . . , i|v|+1, where i|v|+1 = i and also, vω[0, i1) ∈ JrK, vω[i1, i2) ∈ JrK
and so on. Now, notice that it is possible to find numbers i′, j′ with i′ < j′, in the sequence
such that j′ ≡ i′ mod |v| using pigeonhole principle (Since, the sequence contains more than |v|
elements). Consequently, we have vω[0, i′) ∈ Jr+K, vω[i′, j′) ∈ Jr+K and j′ ≡ i′ mod |v|, which
gives us vω ∈ JrωK straightaway using Prop. 1.

Lemma 2. Let uvω ∈ JrωK such that for some i > |u|, uvω[0, i) ∈ JrK and uvω[i,∞) ∈ JrωK. Then,
∃j ∈ N, j > i, such that uvω[0, j) ∈ Jr|v|+1K

The proof for this proceeds exactly the same way as Lemma 1. The next lemma shows how the
length of each match can be bounded.

Lemma 3. vω[i, j) ∈ JrK =⇒ ∃k ∈ N, k − i ≤ n|v| such that vω[i, k) ∈ JrK and k ≡ j mod |v|,
where n is the size of the minimal DFA for JrK.

Proof. If j − i ≤ n|v|, we are done, since we simply take k = j. On the other hand, if j − i > n|v|,
finding the suitable k is a bit more involved. Firstly, since, vω[i, j) ∈ JrK, there is an accepting run of
the DFAA for JrK on vω[i, j), which is of length greater than n|v|. Now, we look at this run ofA on
vω[i, j). Fig 4.1 provides a pictorial depiction of the run. Herewe consider the run to be a sequence
of tuples of the form (q,m), where the first entry refers to the state of the automaton at that instant
and the second entry refers to the position in vwhichwill be read next by the automaton. Hence, it
is easy to observe that any run longer than n|v|wouldmean that there exists a tuple which repeats
itself during the run, due to pigeonhole principle. Let (q, l) be the tuple which repeats itself and
let the run starting at the first occurrence of (q, l) to the next, be referred to as R. Notice that due
to the deterministic nature of the automaton, R repeats itself during the rest of the run. Hence,
if a final state qf occurs after n|v| steps, there must be a tuple (qf ,m) which belongs to the run
R. Clearly, (qf ,m) must have been also visited during the first occurrence of R, which happened
within n|v| steps. Thus, we get a prefix vω[i, k) ∈ JrK, which has length less than n|v|. Moreover,
vω[i, j) and vω[i, k) terminate at the same position in v, meaning k ≡ j mod |v|.

Lemma 4. uvω[i, j) ∈ JrK, where i < |u| < j =⇒ ∃k ∈ N, |u| < k ≤|u|+ n|v| such that uvω[i, k) ∈
JrK and k ≡ j mod |v|.

15 CHAPTER 4. LEARNING ω−REGULAR EXPRESSIONS

The proof for this statement goes along the same lines as Lemma 3. Finally, having these results,
it is possible to verify whether an infinite word (ultimately periodic word in this case) actually
belongs to the language of regular expression by checking only a finite portion of the word. The
following theorems come in handy when designing algorithms for checking matching of infinite
word with ω−regular expressions, by bounding the length on which checking is done.

Theorem 1. vω ∈ JrωK ⇐⇒ ∃i, j ∈ N, 0 < i < j ≤ n|v| + n|v|2 vω[0, i) ∈ Jr+K and vω[i, j) ∈
Jr+K where j ≡ i mod |v|

Proof. (⇐) This can be seen directly from Prop. 1, assuming u = ε.
(⇒) Using Lemma 1, there exists some i′ such that vω[0, i′) ∈ Jr|v|+1K. As a result, we can

generate a sequence of distinct natural numbers, i1, . . . , i|v|+1, with i|v|+1 = i′ such that vω[0, i1) ∈
JrK, vω[i1, i2) ∈ JrK and so on. Now, we can find another sequence j1, . . . , j|v|+1 with j|v|+1, which
satisfy all the properties that the sequence of i′s satisfy and additionally have j1 ≤ n|v|, j2 − j1 ≤
n|v|, so on and also, j1 ≡ i1 mod |v| , j2 ≡ i2 mod |v|, so on. This is a direct consequence of
Lemma 3. It is easy to see that j|v|+1 ≤ n|v| + n|v|2. Moreover, we can again find some i and j in
this sequence such that j ≡ i mod |v| and clearly, vω[0, i) ∈ Jr+K and vω[i, j) ∈ Jr+K.

Theorem2. uvω ∈ JrωK ⇐⇒ ∃i, j ∈ N, |u| < i < j ≤|u|+n|v|+n|v|2 , uvω[0, i) ∈ Jr+K and uvω[i, j) ∈
Jr+K where j ≡ i mod |v|

Proof. (⇐) This can be seen directly from Prop. 1.
(⇒) When uvω ∈ JrωK, there could be two possible cases arising from how uvω matches rω .

− First case would be one in which u ∈ Jr+K and vω ∈ JrωK. In this case, Theorem 1 can be
applied directly to obtain the result.

− In the second case, ∃i′, j′ ∈ N with i′ < |u| < j′, such that, uvω[0, i′) ∈ Jr+K, uvω[i′, j′) ∈
JrK, and uvω[j′,∞) ∈ JrωK. Now, it can be seen that infix uvω[i′,∞) satisfies the conditions
of Lemma 2. Hence, there is some k′ > j′, such that uvω[i′, k′) ∈ Jr|v|+1K. As a result, we
can generate a sequence of distinct natural numbers i1, . . . , i|v|+1, with i1 = j′ and i|v|+1 = k′

such that uvω[i′, i1) ∈ JrK, uvω[i1, i2) ∈ JrK and so on. Combining results of Lemma 4 and
Lemma 3, we can find another sequence j1, j2 . . . j|v|+1 which satisfy the properties of the
sequence of i′s and additionally have j1 ≤|u|+ n|v|, j2 − j1 ≤ n|v|, j3 − j2 ≤ n|v|, so on and
also, j1 = i1 mod |v|, j2 = i2 mod |v|, so on. It is easy to see that j|v|+1 ≤|u|+ n|v|+ n|v|2.
Moreover, in this sequence we can find some i and j such that j ≡ i mod |v| and clearly,
uvω[0, i) ∈ Jr+K and uvω[i, j) ∈ Jr+K.

Motivated by the above results, we define thematching relation for infinitewordswhichwould
help us to algorithmically check the matching of a ultimately periodic word with an ω− regular
expression.

Definition 2. The matching relation ` for finite words with regular expressions, could be extended to
account for matching of ultimately periodic words with ω-regular expressions as well. Here, n refers to the
size of the minimal DFA of JrK in all the cases.

16 CHAPTER 4. LEARNING ω−REGULAR EXPRESSIONS

uvω[i,∞) ` rω ⇐⇒ ∃j, k ∈ N, max (i, |u|) < j < k ≤ i+|u|+|v|+ n|v|+ n|v|2 ,

uvω[i, j) ` r+ and uvω[j, k) ` r+ where k ≡ j mod |v|

uvω[i,∞) ` r ◦ rω ⇐⇒ ∃j ∈ N, i ≤ j ≤|u|+|v|+ n|v| , uvω[i, j) ` r and uvω[j,∞) ` rω
uvω[i,∞) ` rω + r′ω ⇐⇒ uvω[i,∞) ` rω or uvω[i,∞) ` r′ω

It is necessary to checkwhether thematching relation satisfies vω[i,∞) ` rω ⇐⇒ vω[i,∞) ∈ JrωK.
This check proceeds via structural induction on the expression rω .

Observation 4.1: Let uvω ∈ Σω . Then, uvω[|u| + i,∞) = uvω[|u| + j,∞) for j ≡ i mod |v|.
Because of this observation, we can say rω ` uvω[|u|+ i,∞) ⇐⇒ rω ` uvω[|u|+ j,∞). Hence, the
matching relation has been defined only for suffix uvω[i,∞), where i < |uv|.

Unlike regular expression, the construction of the tables for algorithmically checkingmatching
of an ω−regular expression with an ω−word needs a slightly different approach. There are two
types of tables that need to be maintained for each node. The first table keeps track of which infi-
nite suffixes of the ω−word matches which ω−regular subexpressions. The other table maintains
record of matching of finite infixes of the ω−word with regular subexpressions. The entries of
both types of tables are propagated to tables of higher indexed nodes using the matching relation.

4.2 The Learning Problem

We assume that the data to learn from is given as a pair S = (P,N) consisting of two finite, disjoint
sets P,N ⊂ Σ∗ of ultimately periodic words such that P ∩N 6= ∅.

Just like regular expressions, we say that an ω−regular expression rω over Σ is consistent with
a sample S = (P,N) if

1. rω ` u for each u ∈ P ; and

2. rω 0 u for each u ∈ N .

A solution similar to the one used for regular expression can be used for this problem as well.
In fact, the Algorithm 1 would work here and would return a ω−regular expression. The formula
ΦSn used in the algorithm is designed slightly differently for this case. The formula has two parts
as described in Equation 3.1. The first part Φstructure

n which encodes a syntax DAG of an ω-regular
expression has the following variables.

• xp,λ where p ∈ {1, · · · , n} and λ ∈ Λω

• lp,q , rp,q where p ∈ {2, · · · , n} and q ∈ {1, ..., p− 1}

Now, the variables should satisfy certain constraints in order to form a valid syntax DAG. But,
these constraints are precisely the ones that needed to be satisfied by the syntax DAG of regular
expressions. Thus, the exact description of the formulas have been skipped.

While the first part of the formula guesses anω−regular expression r, the secondpartΦ
consistency
n

checkswhetherwords in the samplematches r. This formulamakes use of the following variables.
Here, we assume b = n+ n|v|+ 1 and c = n+ 1.

• yu,vi,p where 0 ≤ i ≤|uv| − 1

• zuvbi,j,p, where 0 ≤ i ≤ j ≤
∣∣uvb∣∣.

17 CHAPTER 4. LEARNING ω−REGULAR EXPRESSIONS

• z̄uvbi,j,p, where 0 ≤ i ≤ j ≤
∣∣uvb∣∣

The variable yu,vi,p basically checks the matching of the infinite suffix uvω[i,∞) with the subex-
pression of the guessed expression r rooted at an infinite operator indexed by p. The variable zuvbi,j,p

checks the matching of finite infix uvb[i, j) with the subexpression of r rooted at a finite operator
indexed by p. z̄uvbi,j,p is an auxiliary variable which captures that whether uvb[i, j) matches r̄+ if r̄ is
the subexpression rooted under the pth node. Φwn is a disjunction of several formulas as mentioned
below.

∧
1≤p≤n

xp,ε →
[∧

0≤i≤j≤|uvb|
zuv

b

i,j,p ↔ [i = j]
]

(4.1)

∧
1≤p≤n

∧
a∈Σ

xp,a →
[∧

0≤i≤j≤|uvb|

zuv
b

i,j,p if w[i, j) = a

¬zuvbi,j,p if w[i, j) 6= a

]
(4.2)

∧
1≤p≤n

1≤q,q′≤p

xp,+ ∧ lp,q ∧ rp,q′ →
[∧

0≤i≤j≤|uvb|

[
zuv

b

i,j,p ↔ zuv
b

i,j,q ∨ zuv
b

i,j,q′

]]
(4.3)

∧
1≤p≤n

1≤q,q′≤p

xp,◦ ∧ lp,q ∧ rp,q′ →
[∧

0≤i≤j≤|uvb|

[
zuv

b

i,j,p ↔
∨

i≤k≤j

zuv
b

i,k,q ∧ zuv
b

k,j,q′

]]
(4.4)

∧
1≤p≤n

1≤q,q′≤p

xp,∗ ∧ lp,q →
[∧

0≤i≤j≤|uvb|

[
zuv

b

i,j,p ↔ [i = j] ∨
∨

i<k≤j

zuv
b

i,k,q ∧ zuv
b

k,j,p

]]
(4.5)

The above formulas are for the finite operators in the guessed expression. They are motivated
by Formulas 3.6 to 3.10 for regular expressions. The formulas for the infinite operators are as
follows.

∧
1≤p≤n
1≤q≤p

xp,ω ∧ lp,q →
[∧

0≤i<|uv|

[
yu,vi,p ↔

∨
max(i, |u|)<j<k≤|uvb|

k≡j mod |v|

[
z̄uv

b

i,j,q ∧ z̄
u,v
j,k,q

]]]

∧
[∧

0≤i≤j≤|uvb|

[
z̄u,vi,j,q ↔

∨
i<k≤j

zuv
b

i,k,q ∧ z̄uv
b

k,j,q

]]]
(4.6)

∧
1≤p≤n

1≤q,q′≤p

xp,◦ω ∧ lp,q ∧ rp,q′ →
[∧

0≤i<|uv|

[
yu,vi,p ↔

∨
i≤j≤|uvc|

[
zuv

b

i,j,q ∧ y
u,v
M(j),q′

]]]
(4.7)

∧
1≤p≤n

1≤q,q′≤p

xp,+ω
∧ lp,q ∧ rp,q′ →

[∧
0≤i<|uv|

yu,vi,p ↔ yu,vi,q ∨ y
u,v
i,q′

]
(4.8)

The formulas for the infinite operators are motivated by how the matching relation is defined.
In the Formula 4.6, the second disjunct computes thematching relation of r̄+ for the subexpression
r̄ rooted at the qth node. M(j) used in Formula 4.7 for ◦ω is defined as follows:

M(j) =

j for j < |uv|

|u|+ ((j −|u|)%|v|) for j ≥|uv|
(4.9)

a%b = r if r is the remainder when a is divided by b. % is a ′remainder′ operation commonly used

18 CHAPTER 4. LEARNING ω−REGULAR EXPRESSIONS

in programming languages such as C. Finally, all the Formulas 4.1 to 4.8 are put together in Φwn .
Φ

consistency
n is constructed in the following manner:

Φconsistency
n =

[∧
w∈P

Φwn ∧ yw0,n
]
∧
[∧
w∈N

Φwn ∧ ¬yw0,n
]

(4.10)

Claim 2. Let S = (P,N) be a sample, n ∈ N \ {0}, and ΦSn be the propositional formula defined above.
Then, the following holds:

1. If there exists a ω−regular expression of size n, RSω that is consistent with S, then the propositional
formula ΦSn is satisfiable.

2. If v |= ΦSn , then Rv is a ω−regular expression of size n that is consistent with S.

The proof for this is similar to the proof for Claim 1. Appendix B has the complete proof.

Chapter 5

Learning of Linear Temporal
Language

The learning algorithm in this chapter has been taken from the paper by Neider and Gavran[6].

5.1 Linear Temporal Logic

Linear Temporal Logic (LTL)[3] is an extension of propositional Boolean logic withmodalities that
allow expressing temporal properties. The syntax of LTL is given by the following grammar:

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

where p ∈ AP, where AP be a set of atomic propositions. The set of all LTL formulas over AP is
referred to as FLTL

LTL is allowed to have formulas commonly used in propositional logic such as true , false , ϕ∧ψ,
ψ → ϕ which are defined as usual. Moreover, additional temporal formulas are also allowed—
Fϕ := trueUϕ (“finally”) and Gϕ := ¬F¬ϕ (“globally”). For sake of the learning problem, it is
enough to consider the primary operators. Hence, let ΛL = AP ∪ {∨,¬,X,U}

Syntax trees and syntax DAGs are appropriate representation for LTL formulas as well. Here,
the labels of the syntax tree or syntax DAG come from the set ΛL. The size of an LTL formula is
naturally defined as the number of unique subformulas in it, which is equivalent to number of
nodes in the syntax DAG representation of the formula.

Semantics: Given a word w ∈ (2AP)ω and a LTL formula ϕ, we define the relation w |=ltl ϕ (read
“w satisfies ϕ”).

w |=ltl p iff p ∈ w[0, 0)

w |=ltl ¬ϕ iff w 6|=ltl ϕ

w |=ltl ϕ ∨ ψ iff w |=ltl ϕ or w |=ltl ψ

w |=ltl Xϕ iff w[1,∞) |=ltl ϕ

w |=ltl ϕUψ iff ∃i ≥ 0 such that, w[i,∞) |=ltl ψ and ∀k 0 < k < i, w[k,∞) � ϕ

Just as in the case of regular expressions and ω−regular expressions, a satisfaction relation needs
to be defined for LTL formulas, for checking whether an infinite word over 2AP satisfies an LTL

19

20 CHAPTER 5. LEARNING OF LINEAR TEMPORAL LANGUAGE

formula ϕ. Here also, we restrict infinite words to only ultimately periodic words, because, they
have certain structural properties, which aid the process of checking satisfaction.

Due to observation 4.1, it is enough to define the satisfaction relation for only those infinite
suffix uvω[i,∞) of uvω , where 0 ≤ i ≤|uv| − 1.

Definition 3. The satisfaction relation �⊆ (2AP)
ω × FLTL is defined inductively on the structure of an

LTL formula ϕ in the following manner:

uvω[i,∞) � p ⇐⇒ p ∈ uvω[i, i)

uvω[i,∞) � ¬ϕ ⇐⇒ uvω[i,∞) 6� ϕ

uvω[i,∞) � ϕ ∨ ψ ⇐⇒ uvω[i,∞) � ϕ or uvω[i,∞) � ψ

uvω[i,∞) � Xϕ ⇐⇒

uvω[i+ 1,∞) � ϕ, for 0 ≤ i < |uv| − 1

uvω[|u| ,∞) � ϕ, for i = |uv| − 1

uvω[i,∞) � ϕUψ ⇐⇒

∃j, i ≤ j ≤|uv| − 1, uvω[j,∞) � ψ and ∀k, i < k < j uvω[k,∞) � ϕ for i < |u|

∃j, |u| ≤ j ≤|uv| − 1, uvω[j,∞) � ψ and ∀k ∈ Iu,v(i, j) uvω[k,∞) � ϕ for i ≥|u|

The set Iu,v(i, j) used in defining the satisfaction relation is defined as follows:

Iu,v(i, j) =

{i, · · · , j − 1} for i ≤ j

{|u| , · · · , j − 1} ∪ {i, · · · ,|uv − 1|} for i > j

Now, it needs to be shown that the satisfaction relation so defined is actually consistent with
the semantics of LTL. Precisely, we need to prove, uvω[i,∞) � ϕ ⇐⇒ uvω[i,∞) |=ltl ϕ. But, this
is not difficult to see and requires an induction on the structure of ϕ.

5.2 The Learning Problem

The problem statement for this case remains almost the same as in ω−regular expressions. Given
a sample S = (P,N) consisting of two finite, disjoint sets P,N ⊂ Σ∗ of ultimately periodic words
such that P ∪N 6= ∅, we need to find a LTL formula ϕ over AP consistent with a sample S.

The solution for this learning problem is not much different from the ones described so far
in this thesis. In fact, the same Algorithm 1 can be used to learn a LTL formula from the given
sample. The only difference is in how the formula ΦSn is formulated. The formula has two parts as
usual.

ΦSn = Φstructure
n ∧ Φconsistency

n

The first part Φstructure
n which encodes a syntax DAG of a LTL formula has the following vari-

ables.

• xp,λ where p ∈ {1, · · · , n} and λ ∈ ΛL

• lp,q , rp,q where p ∈ {2, · · · , n} and q ∈ {1, ..., p− 1}

Now, the variables should satisfy certain constraints in order to form a valid syntax DAG. But,
these constraints are precisely the ones that needed to be satisfied by the syntax DAG of regular
expressions. Thus, the exact description of the formulas have been skipped.

21 CHAPTER 5. LEARNING OF LINEAR TEMPORAL LANGUAGE

The second part of the formula checks whether the guessed syntax DAG of the LTL formula is
consistent with the sample. Φwn is a disjunction of following formulas.

∧
1≤p≤n

∧
p∈AP

xp,p →
[∧

0≤i<|uv|

y
u,v
i,p if p ∈ uv[i, i)

¬yu,vi,p if p 6∈ uv[i, i)

]
(5.1)

∧
1≤p≤n

1≤q,q′≤p

xp,∨ ∧ lp,q ∧ rp,q′ →
[∧

0≤i<|uv|

[
yu,vi,p ↔ yu,vi,q ∨ y

u,v
i,j,q′

]]
(5.2)

∧
1≤p≤n
1≤q≤p

xp,X ∧ lp,q →
[∧

0≤i<|uv|−1

[
yu,vi,p ↔ yu,vi+1,q

]
∧
[
yu,v|uv|−1,p ↔ yu,v|u|,q

]]
(5.3)

∧
1≤p≤n

1≤q,q′≤p

xp,U ∧ lp,q ∧ rp,q′ →
[∧

0≤i≤|u|

[
yu,vi,p ↔

∨
i≤j<|uv|

[
yu,vj,q ∧

∧
i≤k<j

yu,vk,q

]]

∧
[∧
|u|≤i<|uv|

[
yu,vi,p ↔

∨
|u|≤j<|uv|

[
yu,vj,q ∧

∧
k∈Iu,v(i,j)

yu,vk,q

]]
(5.4)

These formulas originate from how the satisfaction relation could be used to check whether
word uvω satisfies the guessed formula. The final step is to collate all the formulas and ensure
consistency with the sample S.

Φconsistency
n =

[∧
w∈P

Φwn ∧ yw0,n
]
∧
[∧
w∈N

Φwn ∧ ¬yw0,n
]

(5.5)

The proof of correctness for the learning algorithm for LTL formulas goes along the same lines
as the proof of Claim 1. The complete proof can be be found in [6].

Chapter 6

Learning Program Specification
Language

6.1 Property Specification Language

Property Specification Language (PSL)[4] is a language for the formal specification of hardware.
It is used to describe properties that are required to hold in the design under verification. PSL
subsumes LTL and has an increased expressive power. While the expressive power of LTL is that
of star-free ω-regular expressions, the expressive power of PSL is the same as the full class of ω-
regular expressions[2]. As PSL is a widely used standard it contains a large amount of derived
operators; we concentrate here only on a subset of operators that suffice to obtain the expressive
power of ω-regular expressions. We call this subset corePSL. The syntax of corePSL is given by
the following grammar:

ϕ ::= p | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕ1Uϕ2 | r |→ ϕ

where p ∈ AP, where Let AP be a set of atomic propositions and r is a regular expression over
2AP. The operator |→ is called suffix implication or trigger. The set of all PSL formulas over AP
is referred to as FPSL. PSL uses operators from both regular expressions and from LTL. Hence,
ΛP = ΛR ∪ ΛL{ |→}, where Σ = 2AP, that is the alpahbet for the regular expressions in PSL is the
subsets of the propositions in AP.

Abbreviations We mention only the main abbreviations related to the suffix implication opera-
tor.

r |⇒ ϕ ::= r |→ (true · ϕ)

r �→ ϕ ::= ¬(r |→ ¬ϕ)

r ::= r �→ true

Semantics Given a word w ∈ (2AP)ω and a corePSL formula ϕ, we define the relation w |=psl ϕ

(read “w satisfies ϕ”) similarly to the way it is defined for LTL. We provide the semantics only for
the new operator, the suffix implication operator.

w |=psl r |→ ϕ iff ∀j ∈ N, (w[0, j) ∈ JrK =⇒ w[j − 1,∞) |=psl ϕ)

22

23 CHAPTER 6. LEARNING PROGRAM SPECIFICATION LANGUAGE

That is, w satisfies r |→ ϕ if for every prefix u of w that matches the regular expression r, the suffix
of w starting where u ends (with one letter overlap) satisfies the formula ϕ.

Definition 4. The satisfaction relation �⊆ (2AP)
ω × FPSL is defined inductively on the structure of an

PSL formula ϕ. Since, the satisfaction relation for the LTL operators in PSL remain the same—satisfaction
relation is defined only for the |→ operator.

uvω[i,∞) � r |→ ϕ ⇐⇒ ∀j ∈ N, j < |u|+|v|+ n|v| , (uvω[i, j) ` r =⇒ uvω[j − 1,∞) � ϕ)

6.2 The Learning Problem

The learning problem in this case is same as LTL. Hence, the approach taken here is same as the
one for LTL. The problem is solved by encoding it as a series of satisfiabilty problem and then
using a SAT solver. The formula designed has two parts. The first part encodes the structure of
the PSL formula and is similar to the one for LTL, with the added PSL operators and operators for
regular expression.

The interesting part is to design Φ
consistency
n , which essentially depends on how the satisfaction

relation is defined. There are two type of variables used in the formula.

• yu,vi,p where 0 ≤ i ≤|uv| − 1

• zuvbi,j,p, where 0 ≤ i ≤ j ≤
∣∣uvb∣∣.

Let, b = n+1 for simplicity. The variables yu,vi,p ensure satisfaction of the guessed PSL formula with
a word uvω present in sample while the variables zuvbi,j,p ensure matching of the regular expressions
in the formula with certain finite infixes of the word uvω . Φwn is a disjunction of the formulas
described below.

∧
1≤p≤n

1≤q,q′≤p

xp, |→ ∧ lp,q ∧ rp,q′ →
[∧

0≤i<|uv|

[
yu,vi,p ↔

∧
i≤j≤|uvb|

[
zuv

b

i,j,q → yu,vM(j−1),q′

]]]
(6.1)

∧
1≤p≤n

xp,ε →
[∧

0≤i≤j≤|uvb|
zuv

b

i,j,p ↔ [i = j]
]

(6.2)

∧
1≤p≤n

∧
a∈2AP

xp,a →
[∧

0≤i≤j≤|uvb|

zuv
b

i,j,p if w[i, j) = a

¬zuvbi,j,p if w[i, j) 6= a

]
(6.3)

∧
1≤p≤n

1≤q,q′≤p

xp,+ ∧ lp,q ∧ rp,q′ →
[∧

0≤i≤j≤|uvb|

[
zuv

b

i,j,p ↔ zuv
b

i,j,q ∨ zuv
b

i,j,q′

]]
(6.4)

∧
1≤p≤n

1≤q,q′≤p

xp,◦ ∧ lp,q ∧ rp,q′ →
[∧

0≤i≤j≤|uvb|

[
zuv

b

i,j,p ↔
∨

i≤k≤j

zuv
b

i,k,q ∧ zuv
b

k,j,q′

]]
(6.5)

∧
1≤p≤n

1≤q,q′≤p

xp,∗ ∧ lp,q →
[∧

0≤i≤j≤|uvb|

[
zuv

b

i,j,p ↔ [i = j] ∨
∨

i<k≤j

zuv
b

i,k,q ∧ zuv
b

k,j,p

]]
(6.6)

It can be observed that for operators of regular expressions, we have used formulas which are
motivated by Formulas 3.6 to 3.10. Also,M(j) has been defined in 4.9. Finally Φ

consistency
S is defined

as 5.5, as for LTL. In other words, given a sample S, we construct a formula ΦSn

24 CHAPTER 6. LEARNING PROGRAM SPECIFICATION LANGUAGE

Claim 3. Let S = (P,N) be a sample, n ∈ N \ {0}, and ΦSn be the propositional formula defined above.
Then, the following holds:

1. If there exists a PSL formula of size n, ϕS that is consistent with S , then the propositional formula
ΦSn is satisfiable.

2. If v |= ΦSn , then ϕv is a PSL formula of size n that is consistent with S.

The proof has been presented in the Appendix B

Chapter 7

Conclusion

The main problem talked about in this thesis is the following: given a sample S consisting of
two finite sets of positive and negative examples, learn a modelM that is consistent with S. The
problem has been looked at for the followingmodels: regular expressions, ω−regular expressions,
Linear Temporal Logic, Property Specification Language.

There are certain interesting directions of future work which emerge from the work presented
in thesis. An implementation of the theoretical results presented in the thesis using SAT solvers
such as Z3 could be of great use. Checking whether the bounds mentioned in the lemmas and
theorems of Chapter 4 are actually tight—could have theoritical relevance. Moreover, the learning
techniques used in this thesis could potentially be applied to many more models including timed
regular expressions[5].

25

Appendix A

Proofs from Chapter 4

Lemma 5. uvω[i,∞) ` rω ⇐⇒ uvω[i,∞) ∈ JrωK

Proof. The proof goes via induction on the structure of the the ω−regular expression.

− Case rω = rω : When i < |u|, let u[i,|u|) = u′. Now, we need to prove u′v � rωWhen i ≥ |u|,
we use Theorem 1 for the proof.

− Case rω = r ◦ r′ω : Consider the following implications:

uvω[i,∞) � r ◦ r′ω ⇐⇒ ∃i ≤ j ≤|u|+|v|+ n|v| , uvω[i, j) � r and uvω[j,∞) � r′ω

⇐⇒ ∃i ≤ j ≤|u|+ n|v| , uvω[i, j) ∈ JrK and uvω[j,∞) ∈ Jr′ωK [Using ind. hypothesis]

⇐⇒ ∃i ≤ j, uvω[i, j) ∈ JrK and uvω[j,∞) ∈ Jr′ωK [Using Lemma 4]

⇐⇒ vω[i,∞) ∈ Jr ◦ r′ωK

An extra term|v| gets added in the inequality in lines 1 and 2, because|u| ≤ i < |uv| in which
case the inequality in Lemma 3 gets shifted by |v| factor.

− Case rω = r′ω + r′′ω : Consider the following implications:

uvω[i,∞) � r′ω + r′′ω ⇐⇒ vω[i,∞) � r′ω or uvω[i,∞) � r′′ω

⇐⇒ vω[i,∞) ∈ Jr′ωK or uvω[i,∞) ∈ Jr′′ωK [Using induction hypothesis]

⇐⇒ uvω[i,∞) ∈ Jr′ω + r′′ωK

26

Appendix B

Proof of Claim 2:

Proof. Using the syntax DAG of the expression RSω which is indexed using 1 · · ·n, we formulate a
valuation v for the propositional variables in ΦSn . We use RSp to refer to the expression rooted at
the pth node.

− We set v(xp,λ) = 1 iff the pth node is labelled by λ.

− We set v(lp,q) = 1 iff qth node is the left child of the pth node and similarly, v(rp,q) = 1 iff qth

node is the right child of the pth node.

− We set v(yu,vi,p) = 1 iff uvω[i, j) � RSp , when label at p is an infinite operator.

− We set v(zuv
b

i,j,p) = 1 iff uvb[i, j) � RSp , when label at p is a finite operator or an alphabet.

− We set v(z̄uv
b

i,j,p) = 1 iff uvb[i, j) � (RSq)+, when label at p is an ω operator and qth node is the
left child of the pth node.

Firstly, it can be seen that v |= Φstructure
n , since the formulated valuation ensures the uniqueness of

the labels of the nodes aswell as that of the left and right children. Moreover, v |= Φwn forw ∈ P∪N ,
since, the values of the variables zuvbi,j,p correspond exactly to the valuation of each subexpression
RSp on the subword w[i, j) for finite operators and alphabets; and the values of the variables yu,vi,p
correspond exactly to the valuation of each subexpression RSp on the subword w[i,∞) for infinite
operators. Finally, the fact thatRSω is consistent with S implies v |= yu,v0,n for each w = uvω ∈ P and
v |= ¬yu,v0,n for each w = uvω ∈ N . Thus, v |= ΦSn , which proves that ΦSn is satisfiable.

For the second statement, since, v |= ΦSn , we have v |= Φstructure
n as well. Hence, the valuation

of the variables xp,λ, lp,q , and rp,q encode a syntax DAG from which we obtain the ω−regular
expression Rv . Again here, we consider Rvp to be the subexpression of Rv rooted at the pth node.
. Now, it needs to be shown that Rv is indeed consistent with the sample S. For that we show,
v(yu,vi,p) = 1 ⇐⇒ uvω[i,∞) ` Rvp for any i ∈ {0, · · · ,|uv| − 1} for the pth node which is labelled by
an infinite operators. For this proof, we consider only those nodes which are labelled by infinite
operators. For the finite operators, we need to show v(zuv

b

i,j,p) = 1 ⇐⇒ uvb[i, j) ` Rvp. But, this is
exactly done in proof of Claim 1. This can be done using induction on the structure of Rv .

− Case Rvp = (Rvq)ω : In this case, v(xp,ω) and v(lp,q) are set to 1. There could be two cases
depending on value of i. In, both the cases we consider that k ≡ j mod |v|.

27

28 APPENDIX B. PROOF OF CLAIM 2:

– When i < |u|

v(yu,vi,p) = 1 ⇐⇒ ∃j, k, |u| ≤ j ≤ k ≤
∣∣∣uvb∣∣∣ , v(z̄uv

b

i,j,q) = 1 and v(z̄uv
b

j,k,q) = 1 [Using Subform. 4.6]

⇐⇒ ∃j, k, |u| ≤ j ≤ k ≤
∣∣∣uvb∣∣∣ , uvb[i, j) ` (Rvq)+ and uvb[i, j) ` (Rvq)+ [Using ind. hypo.]

⇐⇒ (Rvq)ω [Using Theorem 2]

– When i > |u|

v(yu,vi,p) = 1 ⇐⇒ ∃j, k, i ≤ j ≤ k ≤
∣∣∣uvb∣∣∣ , v(z̄uv

b

i,j,q) = 1 and v(z̄uv
b

j,k,q) = 1 [Using Subform. 4.6]

⇐⇒ ∃j, k, i ≤ j ≤ k ≤
∣∣∣uvb∣∣∣ , uvb[i, j) ` (Rvq)+ and uvb[i, j) ` (Rvq)+ [Using ind. hypo.]

⇐⇒ (Rvq)ω [Using Theorem 1]

In both the cases above, we assumed that v(z̄u,vi,j,q) = 1 iff w[i, j) ` (Rvq)+ in the second step,
which cannot be deduced from the induction on the structure of Rvp. This is obtained in the
following manner:

v(z̄uv
b

i,j,p) = 1 ⇐⇒ ∃k ∈ N, i ≤ k ≤ j, v(zuv
b

i,k,q) = 1 and v(z̄uv
b

k,j,p) = 1 [Using Subformula (4.6)]

⇐⇒ ∃k ∈ N, i ≤ k ≤ m, w[i, k) ` Rvq and w[k, j) ` (Rvq)+ [Using ind. hypothesis]

⇐⇒ w[i, j) ` (Rvq)+ [Using Def. 1]

Here, v(z̄uv
b

k,j,p) = 1 iff w[k, j) ` (Rvq)+ requires another level of induction, similar to the last
case of the proof of Claim 1.

− CaseRvp = Rvq ◦ω Rvq′ : In this case, v(xp,◦ω), v(lp,q), v(rp,q′) are all set to 1 and this leads to the
following implications:

v(yu,vi,p) = 1 ⇐⇒ ∃k ∈ N, 1 ≤ j ≤|uvc| , v(zu,vi,k,q) = 1 and v(yu,vM(j),q′) = 1 [Using Subformula 4.7]

⇐⇒ ∃k ∈ N, 1 ≤ k ≤ m,w[i, j) ` Rvq and w[M(j),∞) ` Rvq′ [Using ind. hypothesis]

⇐⇒ ∃k ∈ N, 1 ≤ k ≤ m,w[i, j) ` Rvq and w[j,∞) ` Rvq′ [Using Observation 4.1]

⇐⇒ w[i, j) ` Rvq ◦ω Rvq′ [Using Def. 2]

− Case Rvp = Rvq +ω R
v
q′ : In this case, v(xp,+ω

), v(lp,q), v(rp,q′) are all set to 1, and this leads to
the following implications:

v(yu,vi,p) = 1 ⇐⇒ v(yu,vi,q) = 1 or v(yu,vi,q′) = 1 [Using Subformula 4.8]

⇐⇒ w[i,∞) ` Rvq or w[i,∞) ` Rvq′ [Using ind. hypothesis]

⇐⇒ w[i, j) ` Rvq +ω R
v
q′ [Using Def. 2]

Proof of Claim 3

Proof. Using the syntax DAG of the expression ϕS which is indexed using 1 · · ·n, we formulate a
valuation v for the propositional variables in ΦSn . We use ϕSp to refer to the formula rooted at the
pth node.

29 APPENDIX B. PROOF OF CLAIM 2:

− We set v(xp,λ) = 1 iff the pth node is labelled by λ.

− We set v(lp,q) = 1 iff qth node is the left child of the pth node and similarly, v(rp,q) = 1 iff qth

node is the right child of the pth node.

− We set v(yu,vi,p) = 1 iff uvω[i,∞) ` ϕSp , when label at p is an LTL operator or a triggers(|→)
operator or a proposition in AP.

− We set v(zuv
b

i,j,p) = 1 iff uvb[i, j) ` ϕSp , when label at p is a operator from regular expressions
or a letter of the alphabet 2AP.

Firstly, it can be seen that v |= Φstructure
n , since the formulated valuation ensures the unique-

ness of the labels of the nodes as well as that of the left and right children. Moreover, v |= Φwn

for w ∈ P ∪ N , since, the values of the variables zuvbi,j,p correspond exactly to the valuation of each
subformula ϕSp on the subword uvb[i, j) for |→, LTL operators and letters of alphabet 2AP; and
the values of the variables yu,vi,p correspond exactly to the valuation of each subformula ϕSp on the
subword uvω[i,∞) for |→, LTL operators or a proposition in AP. Finally, the fact that ϕS is consis-
tent with S implies v |= yu,v0,n for each w = uvω ∈ P and v |= ¬yu,v0,n for each w = uvω ∈ N . Thus,
v |= ΦSn , which proves that ΦSn is satisfiable.

For the second statement, since, v |= ΦSn , we have v |= Φstructure
n as well. Hence, the valuation of

the variables xp,λ, lp,q , and rp,q encode a syntax DAG from which we obtain the PSL formula ϕv .
Again here, we consider ϕvp to be the subformula of ϕv rooted at the pth node. Now, it needs to be
shown thatϕv is indeed consistentwith the sampleS. For thatwe show, v(yu,vi,p) = 1 ⇐⇒ uvω[i,∞) ` ϕvp
for any i ∈ {0, · · · ,|uv|−1} for the pth nodewhich is labelled by |→, LTL operators or a proposition
inAP. For the regular operators and its corresponding alphabet, weneed to show v(zuv

b

i,j,p) = 1 ⇐⇒ uvb[i, j) ` ϕvp.
But, this is exactly done in proof of Claim 1. For this proof, we consider only those nodes which
are labelled by only the |→ operator. This can be done using induction on the structure of ϕv .

− Base case ϕvp = p: In this case, v(xp,p) = 1, which leads to the following implications:

v(yu,vi,p) = 1 ⇐⇒ p ∈ uvω[i, i) [Using Subformula (5.1)]

⇐⇒ uvω[i, j) � p [Using Def. 3]

− Case ϕvp = ϕvq ∨ ϕvq′ : In this case, v(xp,∨), v(lp,q), v(rp,q′) are all set to 1, and this leads to the
following implications:

v(yu,vi,p) = 1 ⇐⇒ v(yu,vi,q) = 1 or v(yu,vi,q′) = 1 [Using Subformula (5.2)]

⇐⇒ uvω[i,∞) � ϕvq or uvω[i,∞) � ϕvq′ [Using ind. hypothesis]

⇐⇒ uvω[i,∞) � ϕvq ∨ ϕvq′ [Using Def. 3]

− Case ϕvp = X(ϕvq): In this case, v(xp,X) and v(lp,q) are set to 1 and this leads to the following

30 APPENDIX B. PROOF OF CLAIM 2:

implications:

v(yu,vi,p) = 1 ⇐⇒

v(yu,vi+1,q) = 1 for 0 ≤ i < |uv| − 1

v(yu,v|u|,q) = 1 for i = |uv| − 1
[Using Subformula (5.3)]

⇐⇒

uvω[i+ 1,∞) � ϕvq for 0 ≤ i < |uv| − 1

uvω[|u| ,∞) � ϕvq for i = |uv| − 1
[Using ind. hypothesis]

⇐⇒ uvω[i,∞) � X(ϕvq) [Using Def. 3]

− Case ϕvp = ϕvqUϕvq′ : In this case, v(xp,U), v(lp,q), v(rp,q′) are all set to 1, and this leads to the
following implications:

v(yu,vi,p) = 1 ⇐⇒

∃j, i ≤ j ≤|uv| − 1, v(yu,vj,q′) = 1 and ∀k, i ≤ k < j, v(yu,vk,q) = 1 for i < |u| [Using

∃j, |u| ≤ j < |uv| , v(yu,vj,q′) = 1 and ∀k, k ∈ Iu,v(i, j), v(yu,vk,q) = 1 for i ≥|u| Subform. (5.4)]

⇐⇒

∃j, i ≤ j ≤|uv| − 1, uvω[j,∞) � ϕvq′ and ∀k, i ≤ k < j, uvω[k,∞) � ϕvq for i < |u| [Using

∃j, |u| ≤ j < |uv| , uvω[j,∞) � ϕvq′ and ∀k, k ∈ Iu,v(i, j), uvω[k,∞) � ϕvq for i ≥|u| ind. hyp.

⇐⇒ uvω[i, j) � ϕvqUϕvq′ [Using Def. 3]

− Case ϕvp = ϕvq |→ ϕvq′ : In this case, v(xp, |→), v(lp,q), v(rp,q′) are all set to 1, and this leads to the
following implications:

v(yu,vi,p) = 1 ⇐⇒ ∀j, i ≤ j ≤
∣∣∣uvb∣∣∣ , v(zuv

b

i,j,q) = 1 =⇒ v(yu,vM(j−1),q′) = 1 [Using Subformula (6.6)]

⇐⇒ ∀j, i ≤ j ≤|u|+|v|+ n|v| , uvb[i, j) ` ϕvq =⇒ uvω[M(j − 1), q′) � ϕ′q [Using ind. hypothesis

⇐⇒ ∀j, i ≤ j ≤|u|+|v|+ n|v| , uvb[i, j) ` ϕvq =⇒ uvω[j − 1, q′) � ϕ′q [Using Observation 4.1

⇐⇒ uvω[i,∞) � ϕvq |→ ϕvq′ [Using Def. 3]

Here, we assumed that v(ywk,j,p) = 1 iff w[k, j) � ϕvp in the second step, which cannot be
deduced from the induction on the structure of ϕvp. This we obtained using another level of
induction, which is on the length of the subword that matches ϕvp. More precisely, we induct
on k which ranges from j to i+ 1, where by induction hypothesis, it is assumed that

v(ywk,j,p) = 1 ⇐⇒ w[k, j) � ϕvp ∀k, i < k ≤ j

The base case occurswhen k = j, and then,wehave v(ywk,j,p) = 1 ⇐⇒ k = j ⇐⇒ w[k, j) � ϕvp.

Bibliography

[1] Alves, T., Teresa Martins, A., and Martins Ferreira, F. On finding a first-order sentence
consistent with a sample of strings. vol. 277, pp. 220–234.

[2] Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim,
S., Singerman, E., Tiemeyer, A., Vardi, M. Y., and Zbar, Y. The forspec temporal logic: A new
temporal property-specification language. In TACAS (2002).

[3] Baier, C., and Katoen, J.-P. Principles of Model Checking, vol. 26202649. 01 2008.

[4] Eisner, C., and Fisman, D. A Practical Introduction to PSL. 07 2006.

[5] Narayan, A., Cutulenco, G., Joshi, Y., and Fischmeister, S. Mining timed regular specifications
from system traces. ACM Trans. Embed. Comput. Syst. 17, 2 (Jan. 2018), 46:1–46:21.

[6] Neider, D., and Gavran, I. Learning linear temporal properties. In 2018 Formal Methods in
Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018 (2018),
pp. 1–10.

[7] Pnueli, A. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on
Foundations of Computer Science (Washington, DC, USA, 1977), SFCS ’77, IEEE Computer Soci-
ety, pp. 46–57.

[8] Wolper, P. Temporal logic can bemore expressive. In Proceedings of the 22NdAnnual Symposium
on Foundations of Computer Science (Washington, DC, USA, 1981), SFCS ’81, IEEE Computer
Society, pp. 340–348.

31

	Introduction
	Possible Applications

	Preliminaries
	Learning Regular Expressions
	Regular Expressions
	The Learning Problem
	Proof of correctness

	Learning -Regular Expressions
	-Regular expression
	The Learning Problem

	Learning of Linear Temporal Language
	Linear Temporal Logic
	The Learning Problem

	Learning Program Specification Language
	Property Specification Language
	The Learning Problem

	Conclusion
	Proofs from Chapter 4
	Proof of Claim 2:
	Bibliography

