

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS

Abstract

- Our goal is to provide explanations of black-box systems using humaninterpretable models.
- We provide explanations of black-box system by observing their behavior and providing models in IEEE standard temporal logic: Property Specification Language (PSL) to describe them.

Explanation: $A \wedge FB$

Property Specification Language (PSL)^{*}

PSL is an extension of Linear Temporal Logic (LTL) with the triggers operator, one of whose operands is a **Regular expression**. Syntax:

 $\varphi ::= p \in \mathcal{P} \mid \varphi_1 \lor \varphi_2 \mid \neg \varphi \mid \mathbf{X}\varphi \mid \varphi_1 \mathbf{U}\varphi_2 \mid \rho \mapsto \varphi,$

where **X** and **U** are standard temporal operators and ρ denotes a regular expression.

Semantics:

- PSL formulas are interpreted over infinite words which represent system traces.
- The semantics of boolean operators are defined in a usual manner.
- The semantics of temporal operators $\mathbf{X}, \mathbf{U}, \mapsto$ is defined as follows:

* We only consider the core fragment of PSL, whose expressive power is equivalent to that of the entire class.

LEARNING INTERPRETABLE MODELS IN THE PROPERTY **SPECIFICATION LANGUAGE**

Rajarshi Roy¹, Dana Fisman², Daniel Neider¹

Why PSL?

- PSL integrates **easy-to-understand** regular expressions in its syntax
- The expressive power of PSL is that of the full class of regular omegalanguages;
- One can provide **concise descriptions** of system behavior using models in PSL. (PSL can often be more succinct than LTL while describing similar a given system behavior)

Problem Statement

Input: S = (P, N), where P and N consist of positive and negative words resp. All words are *ultimately periodic*, that is of the form uv^{ω} .

Problem: Find a minimal PSL formula φ consistent with S in that:

- All positive words $w \in P$ satisfy φ ; and
- None of the negative words $w \in N$ satisfy φ .

Given S, we encode the problem in SAT using a series of propositional formula $(\Phi_n^{\mathcal{S}})_{n=1,2,\dots}$, such that

Solution approach

- 1. $\Phi_n^{\mathcal{S}}$ is satisfiable $\iff \exists$ a PSL formula φ of size *n* that is consistent with \mathcal{S}
- 2. A model of $\Phi_n^{\mathcal{S}}$ contains enough information to extract a consistent PSL formula of size n
- The framework of the algorithm that we follow is depicted below:

The SAT encoding

There are two parts to the SAT-encoding $\Phi_n^{\mathcal{S}}$:

- encodes structure of PSL formulas.
- checks for consistency with sample

Constraints

Structural constraints: PSL formu tures know as syntax DAG. For exam X q is as follows:

consists of constraints to end expressible in propositional logic, suc

- each node should be labeled with c
- each node should have at least or constraints that

Constraints for consistency: Φ_n^{co} straints, again expressible in proposit

- track the satisfaction of PSL form words in sample using the semantic out how to reduce satisfaction of PS finite words).
- ensure that positive words are satisfied and negative words are not satisfied.

Theoritical Guarentees

minimal PSL formula that is consistent with S. modification the learning algorithm infers minimal regular expression.

Empirical evaluation

- using Z3 as a SAT solver.
- LTL by Neider and Gavran.
- formulas appearing in practice.
- benchmarks and inferred a smaller formula on 52 benchmarks.

Contact Info: rajarshi, neider@mpi-sws.org, dana@cs.bgu.ac.il

ulas can be represented using tree-like struc-
ple, the syntax DAG for the formula $(p \circ q) \mapsto$
code such a syntax DAG, (\rightarrow)
ch as:
one operator;
ne left child and similar $(*)$
$\xrightarrow{nsistency} \text{ consists of con-} \stackrel{ }{\stackrel{p}{\hookrightarrow}} (p^* \circ q) \mapsto X q$
tional logic, that
nula on every position of
es of PSL operators (this step involves figuring
SL on infinite words to satisfaction of PSL on

Theorem: Given sample S, the learning algorithm terminates and outputs a **Corollary:** Since PSL subsumes regular expressions in its syntax, with simple

• We implemented a prototype Flie-PSL of the learning algorithm in python

• We have also compared it against state-of-the-art tool LTL-Infer for inferring

• One of the benchmark suites used is synthetic data derived from common PSL

• Out of the 390 benchmarks, Flie-PSL ran faster than LTL-Infer in 25