
LEARNING INTERPRETABLE MODELS IN THE PROPERTY

SPECIFICATION LANGUAGE

Rajarshi Roy 1, Dana Fisman 2, Daniel Neider 1

LEARNING INTERPRETABLE MODELS IN THE PROPERTY

SPECIFICATION LANGUAGE

Rajarshi Roy 1, Dana Fisman 2, Daniel Neider 1

1
2

Abstract

• Our goal is to provide explanations of black-box systems using human-
interpretable models.

• We provide explanations of black-box system by observing their behavior and
providing models in IEEE standard temporal logic: Property Specification
Language (PSL) to describe them.

Property Specification Language (PSL)*

PSL is an extension of Linear Temporal Logic (LTL) with the triggers operator,
one of whose operands is a Regular expression.

Syntax:
ϕ ::= p ∈ P | ϕ1 ∨ ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2 | ρ 7→ ϕ,

where X and U are standard temporal operators and ρ denotes a regular expression.

Semantics:

• PSL formulas are interpreted over infinite words which represent system
traces.

• The semantics of boolean operators are defined in a usual manner.

• The semantics of temporal operators X, U, 7→ is defined as follows:
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* We only consider the core fragment of PSL, whose expressive power is equivalent to that of the entire class.

Why PSL?

• PSL integrates easy-to-understand regular expressions in its syntax

• The expressive power of PSL is that of the full class of regular omega-
languages;

• One can provide concise descriptions of system behavior using models in
PSL. (PSL can often be more succinct than LTL while describing similar a
given system behavior)

Problem Statement

Input: S = (P,N), where P and N consist of positive and negative words resp.
All words are ultimately periodic, that is of the form uvω.

Problem: Find a minimal PSL formula ϕ consistent with S in that:

• All positive words w ∈ P satisfy ϕ; and

• None of the negative words w ∈ N satisfy ϕ.

P N

ϕ

Solution approach

Given S, we encode the problem in SAT using a series of propositional formula
(ΦSn )n=1,2,···, such that

1. ΦSn is satisfiable ⇐⇒ ∃ a PSL formula ϕ of size n that is consistent with S
2. A model of ΦSn contains enough information to extract a consistent PSL formula

of size n

The framework of the algorithm that we follow is depicted below:

n← 0 n← n+1

create
propositional
formula ΦSn
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satisfiable?
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no
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The SAT encoding

There are two parts to the SAT-encoding ΦSn :

ΦSn = Φstructure
n ∧ Φconsistency

n

• Φstructure
n : encodes structure of PSL formulas.

• Φconsistency
n checks for consistency with sample

Constraints

Structural constraints: PSL formulas can be represented using tree-like struc-
tures know as syntax DAG. For example, the syntax DAG for the formula (p◦q) 7→
X q is as follows:

7→

◦ X

∗

p

q

(p∗ ◦ q) 7→ X q

Φstructure
n consists of constraints to encode such a syntax DAG,

expressible in propositional logic, such as:

• each node should be labeled with one operator;

• each node should have at least one left child and similar
constraints that

Constraints for consistency: Φconsistency
n consists of con-

straints, again expressible in propositional logic, that

• track the satisfaction of PSL formula on every position of
words in sample using the semantics of PSL operators (this step involves figuring
out how to reduce satisfaction of PSL on infinite words to satisfaction of PSL on
finite words).

• ensure that positive words are satisfied and negative words
are not satisfied.

Theoritical Guarentees
Theorem: Given sample S, the learning algorithm terminates and outputs a
minimal PSL formula that is consistent with S.
Corollary: Since PSL subsumes regular expressions in its syntax, with simple
modfication the learning algorithm infers minimal regular expression.

Empirical evaluation

•We implemented a prototype Flie-PSL of the learning algorithm in python
using Z3 as a SAT solver.

•We have also compared it against state-of-the-art tool LTL-Infer for inferring
LTL by Neider and Gavran.

•One of the benchmark suites used is synthetic data derived from common PSL
formulas appearing in practice.

•Out of the 390 benchmarks, Flie-PSL ran faster than LTL-Infer in 25
benchmarks and inferred a smaller formula on 52 benchmarks.
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