
Goal: Learn human interpretable models to explain the temporal behavior of 
AI systems.

AI system

obstacle

Consider the following behavior of an AI-based robot cleaner:

Always, if an obstacle is hit, then turn_around in the next timestep

Deterministic Finite Automata (DFA)

!obstacle

obstacle

turn_around

Uses 
- atomic propositions
- states
- transitions 
- initial state
- final states

Standard representation for Regular languages

Linear Temporal Logic (LTL)

Globally(obstacle implies neXt turn_around)

Formulas over
- atomic propositions
- Boolean operators:  ∧ (and)   ∨ (or)   ¬ (not)   → (implies) 
- temporal operators:  G (globally)   F (finally)   X (next)   U (until)   

Less expressive than Regular languages
Resembles Natural Language

General Problem: Learn DFAs and LTL formulas to explain the system 
trajectories 

Positive

Negative

Model M

𝑡1

𝑡2

𝑡3

𝑡4

DFAs
- Biermann and Feldman (IEEE Trans. CS 21, 1972)
- Grinchtein, Leucker, and Piterman (IJCAR, 2006)
- …

LTL formulas
- Neider and Gavran (FMCAD, 2018)
- Camacho and Mcllraith (ICAPS, 2019)
- …

Positive Model M

DFAs
- Avellaneda and Petrenko (ICGI, 2018)

LTL formulas
No work for the full class of LTL formulas

• Extracting negative examples from a black-box model is often 
infeasible.

• Generating negative examples in safety critical applications 
can be risky.

Typical Setting

Our Setting

The most concise model that 
accepts positive trajectories is:

Overgeneralization

*

𝜑 = true

DFA

LTL formula

The models are too general!

𝑡1

𝑡2

𝜑 = 𝜑𝑡1 ∧ ⋯∧ 𝜑𝑡𝑛

DFA

LTL formula

The models are large and too specific!

𝑡1

𝑡𝑛

Overfitting

The strictest formula that accepts the 
positive trajectories is

Learn a model M that accepts all trajectories in P and

1. has size less than (to handle overfitting); and

2. is language minimal (to handle overgeneralization).

Positive Trajectories: Size upper bound:

P

L(M) → the set of accepted trajectories

M is language minimal if for no other M’ that accepts all trajectories in and 

has size less than , L(M’)⊂L(M)

…

For OCC problem for LTL formulas

Counterexample-guided algorithm
that generates negative trajectories to direct the search

Semi-Symbolic algorithm 
that combines the symbolic and the counterexample-

guided approach

For OCC problem for DFAs

Symbolic algorithm
that encodes the search for language 

minimal DFAs in SAT                                                     

Implemented a prototype containing all the algorithms

An empirical evaluation showing the ability of our prototype to learn 
interpretable models

A = A*

Construct ΦA

Is ΦA

SAT?

Return A

𝐴 ≔ DFA constructed 
from a model of ΦA

ΦA is satisfiable iff there exists A’ that 
• has size less than 
• accepts all trajectories in P, and
• L(A’)⊂L(A)

Construct Φ𝐴

NoYes

The symbolic algorithm always terminates and returns a language 
minimal DFA A

*

A*

P,

L(A*) ⊃ L(A1) ⊃ L(A2) ⊃ … ⊃ L(Asol) 

Aguess

Is 

Ψ𝑁,𝐷

SAT?

Return 𝜑

𝜑′ ≔ LTL formula 
constructed from a 

model of Ψ𝑁,𝐷

Construct 
Ψ𝑁,𝐷

No YesN → negative trajectories
D → discard pile of LTL formulas

Ψ𝑁,𝐷 is SAT iff there exists 𝜑’ that 
• has size less than ,
• accepts all trajectories in ,
• rejects the trajectories in N  
• is not in D

The counterexample-guided algorithm always terminates and returns a 
language minimal LTL formula

𝜑 = true, N=D=∅
Construct Ψ𝑁,𝐷

Add elements to 
D and N, 

comparing L(𝜑) 
and L(𝜑’)

𝜑 = 𝜑′
if L(𝜑′)⊂L(𝜑)

P,

L(true) ⊃ L(𝜑1) ⊃ L(𝜑2) ⊃ … ⊃ L(𝜑sol)

𝜑guess

• L(𝜑’) ⊈ L(𝜑): Add t to N
• L(𝜑’) = L(𝜑): Add 𝜑’ to D 

Size bound 

# of iterations in Symbolic

# of iterations in A&P algo

Compared against counterexample-guided 
algorithm for DFAs by Avellaneda and 
Petrenko (A&P algo)

Obtained at least 10x less number of 
iterations

…

More Experiments in the paper!

Considered the OCC problem for DFAs and LTL formulas.

Presented three novel algorithms for solving OCC problems and 
implemented them in a prototype


